Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes

نویسندگان

  • Carmit Levy
  • Mehdi Khaled
  • Kathleen C. Robinson
  • Rosa A. Veguilla
  • Po-Hao Chen
  • Satoru Yokoyama
  • Eiichi Makino
  • Jun Lu
  • Lionel Larue
  • Friedrich Beermann
  • Lynda Chin
  • Marcus Bosenberg
  • Jun. S. Song
  • David E. Fisher
چکیده

DICER is a central regulator of microRNA maturation. However, little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as mature miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression--an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER's transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17 approximately 92 cluster thus targeting BIM, a known proapoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying lineage-specific miRNA regulation which could exist for other cell types during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability

Kit/SCF signaling and Mitf-dependent transcription are both essential for melanocyte development and pigmentation. To identify Mitf-dependent Kit transcriptional targets in primary melanocytes, microarray studies were undertaken. Among identified targets was BCL2, whose germline deletion produces melanocyte loss and which exhibited phenotypic synergy with Mitf in mice. BCL2's regulation by Mitf...

متن کامل

YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcripti...

متن کامل

A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors

During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10(fl); Tg(Tyr::CreER)) results in ...

متن کامل

FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism.

The first neural crest cells to emigrate from the neural tube are specified as neurons and glial cells and are subsequently followed by melanocytes of the skin. We wished to understand how this fate switch is controlled. The transcriptional repressor FOXD3 is expressed exclusively in the neural/glial precursors and MITF is expressed only in melanoblasts. Moreover, FOXD3 represses melanogenesis....

متن کامل

Microphthalmia-associated transcription factor is a critical transcriptional regulator of melanoma inhibitor of apoptosis in melanomas.

Melanoma inhibitor of apoptosis (ML-IAP) is a potent inhibitor of apoptosis, which is highly expressed in melanomas and likely contributes to their resistance to chemotherapeutic treatments. Herein, we show that the lineage survival oncogene microphthalmia-associated transcription factor (MITF) is a critical regulator of ML-IAP transcription in melanoma cells. The ML-IAP promoter contains two M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2010